Análise de similaridade entre classes de padrões de ativação neuronal.
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/338 |
Resumo: | Há um número crescente de tecnologias que fazem uso de algoritmos de classificação para a automação de tarefas. Em particular, em Neurociências, algoritmos de classificação foram usados para testar hipóteses sobre o funcionamento do sistema nervoso central. No entanto, a relação entre as classes de padrões de ativação neuronal de áreas específicas do cérebro, como resultado de experiências sensoriais tem recebido pouca atenção. No contexto da Neurociência Computacional, este trabalho apresenta uma análise do nível de similaridade entre classes de padrões de ativação neuronal, com o uso das abordagens de aprendizagem não supervisionada e semi-supervisionada, em áreas específicas do cérebro de ratos em contato com objetos, obtidos durante um experimento envolvendo exploração livre de objetos pelos animais. As classes foram definidas de acordo com determinados tratamentos construídos com níveis específicos de um conjunto de 8 fatores (Animal, Região do Cérebro, Objeto ou Par de Objeto, Algoritmo de Agrupamento, Métrica, Bin, Janela e Intervalo de Contato). No total foram analisados 327.680 tratamentos. Foram definidas hipóteses quanto à relação de cada um dos fatores para com o nível de similaridade existente entre os tratamentos. As hipóteses foram verificadas por meio de testes estatísticos entre as distribuições que representavam cada uma das classes. Foram realizados testes de normalidade (Shapiro-Wilk, QQ-plot), análise de variância e um teste para diferenças entre tendência central (Kruskal-Wallis). Com base nos resultados encontrados nos estudos utilizando abordagem não supervisionada, foi inferido que os processos de aquisição e de definição dos padrões de ativação por um observador foram sujeitos a uma quantidade não significativa de ruídos causados por motivos não controláveis. Pela abordagem semisupervisionada, foi observado que nem todos os graus de similaridade entre pares de classes de objetos são iguais a um dado tratamento, o que indicou que a similaridade entre classes de padrões de ativação neuronal é sensível a todos os fatores analisados e fornece evidências da complexidade na codificação neuronal. |