Investigação do problema de detecção de faces com variações de orientação.

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: PEREIRA, Eanes Torres.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1300
Resumo: Nesta tese, investiga-se o problema da detecção de faces que apresentam grandes variações de orientação. Foram identificados fatores capazes de influenciar os resultados quando determinadas métricas de avaliação são utilizadas. Por exemplo, se a métrica empregada leva em consideração as áreas de detecção obtidas pelos classificadores e as áreas rotuladas por humanos (groundtruth), a forma como as imagens detectadas são marcadas inteferirá nos resultados. Em relação ao aspecto de recorte das faces, os resultados experimentais comprovam que se forem incluídas regiões externas da face para treinamento, os resultados de detecção são melhorados. ara lidar com todos esses fatores, foi proposta e implementada uma abordagem para a detecção de faces que explora a invariância por treinamento para gerar uma árvore de classificadores com menor complexidade computacional do que outras abordagens propostas na literatura, capaz de lidar com grandes variações de orientação no plano da imagem. A fim de tornar factível o treinamento dos classificadores dessa árvore, é apresentada uma abordagem híbrida de paralelização para o método de treinamento de classificadores proposto por Viola e Jones (2004). A abordagem de detecção de faces proposta obteve resultados superiores àqueles obtidos por Rowley, Baluja e Kanade (1998b) e Viola e Jones (2004). Apenas uma das abordagens concorrentes, aquela proposta por Huang et al. (2007), obteve resultados superiores, porém por uma pequena diferença. Apesar disso, a abordagem proposta nesta tese possui menor complexidade computacional em termos de quantidade de níveis da árvore de classificadores e quantidade de nós de processamento.