[pt] DETECÇÃO DE PADRÕES EM IMAGENS BIDIMENSIONAIS: ESTUDO DE CASOS
Ano de defesa: | 2005 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7469&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7469&idi=2 http://doi.org/10.17771/PUCRio.acad.7469 |
Resumo: | [pt] A presente dissertação estudo dois problemas de detecção de padrões em imagens com fundo complexo, casos onde os algoritmos de segmentação convencionais não podem proporcionar bons resultados: a localização de Unidades Estruturais (UE`s) em imagens obtidas por Microscópio Eletrônico de Transmissão em Alta Resolução, e a detecção de faces frontais na posição vertical em imagens. Apesar de serem abordados problemas diferentes, as metodologias empregadas na solução de ambos os problemas possuem semelhanças. Uma operação de vizinhança é aplicada a imagem de entrada em busca de padrões de interesse. Sendo cada região extraída desta imagem submetida a um operador matemático composto por etapas de pré-processamento, redução de dimensionalidade e classificação. Na detecção de UE`s foram empregados três métodos distintos de redução de dimensionalidade - Análise de Componentes Principais (PCA), PCA do conjunto de treinamento equilibrado (PCAEq), e um método inédito, eixos que maximizam a distância ao centróide de uma classe (MAXDIST) - e dois modelos de classificador - classificador baseado na distância euclideana (EUC) e rede neural back-propagation (RN). A combinação PCAEq/RN forneceu taxa de detecção de 88% para 25 componentes. Já a combinação MAXDIST/EUC com apenas uma atributo forneceu 82% de detecção com menos falsas detecções. Na detecção de faces foi empregada uma nova abordagem, que utiliza uma rede neural back-propagation como classificador. Aplica-se a sua entrada recebe a representação no subespaço das faces e o erro de reconstrução. Em comparação com os resultados de referência da literatura na área, o método proposto atingiu taxas de detecção similares. |