Identidades polinomiais e polinômios centrais para álgebra de Grassmann.
Ano de defesa: | 2012 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Ciências e Tecnologia - CCT PÓS-GRADUAÇÃO EM MATEMÁTICA UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1354 |
Resumo: | Neste trabalho de dissertação estudamos as identidades polinomiais ordinárias para a Álgebra de Grassmann com unidade, denotada por E, e sem unidade, denotada por E 0, para corpos de característica diferente de 2. Além disso, também estudamos as identidades Z2-graduadas da álgebra E no caso em que o corpo tem característica positiva. Por fim, descrevemos o T-espaço dos polinômios centrais de E tanto para corpos de característica zero, quanto para corpos de característica positiva e descrevemos também os polinômios centrais de E 0 para corpos de característica positiva. |