Identidades polinomiais e polinômios centrais para álgebra de Grassmann.

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: COSTA, Nancy Lima.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Ciências e Tecnologia - CCT
PÓS-GRADUAÇÃO EM MATEMÁTICA
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1354
Resumo: Neste trabalho de dissertação estudamos as identidades polinomiais ordinárias para a Álgebra de Grassmann com unidade, denotada por E, e sem unidade, denotada por E 0, para corpos de característica diferente de 2. Além disso, também estudamos as identidades Z2-graduadas da álgebra E no caso em que o corpo tem característica positiva. Por fim, descrevemos o T-espaço dos polinômios centrais de E tanto para corpos de característica zero, quanto para corpos de característica positiva e descrevemos também os polinômios centrais de E 0 para corpos de característica positiva.