Conversor configurável analógico para informação.
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/778 |
Resumo: | Nos conversores Analógicos Digitais (ADC) com frequência de conversão baseada no Teorema de Nyquist, o parâmetro básico para orientar a aquisição é a largura de banda do sinal. O tratamento da informação e a remoção da redundância são realizados após a representação digital obtida do sinal. A Amostragem Compressiva foi proposta como uma técnica de digitalização que explora a esparsidade do sinal em um determinado domínio, para capturar apenas seu conteúdo de informação, com uma taxa que pode ser menor do que a preconizada pelo Teorema de Nyquist. As arquiteturas em hardware para implementar a Amostragem Compressiva são chamadas de Conversores Analógicos para Informação (AIC). Os AIC propostos na bibliografia exploram a esparsidade do sinal em um determinado domínio, e por isso cada arquitetura é especifica para uma classe de sinais. Nesta tese propõe-se um AIC configurável, baseado em arquiteturas conhecidas, capaz de adquirir sinais de várias classes, alterando seus parâmetros de configuração. No trabalho desenvolveu-se um modelo computacional, que permite analisar o comportamento dinâmico do AIC, e dos parâmetros de hardware propostos, bem como foi feita a implementação física da arquitetura proposta. Verificou-se a adaptabilidade dessa arquitetura a partir dos resultados obtidos, pois foi possível fazer a aquisição de mais de uma classe de sinais. |