Sistema de reconhecimento de palavras manuscritas dependente do usuário.

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: VELOSO, Luciana Ribeiro.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1446
Resumo: Este trabalho apresenta um sistema de reconhecimento de palavras manuscritas isoladas dependente do escritor. Este sistema caracteriza-se por utilizar uma etapa de pré-processamento, que visa corrigir imperfeições e normalizar variações na imagem da palavra manuscrita, uma etapa de segmentação explícita, que visa dividir a palavra em caracteres ou segmentos de caracteres, uma etapa de extração de características, que tem por finalidade representar a imagem por três vetores de características (perceptivas, globais e direcionais) e um módulo de quantização vetorial, que tem o objetivo de realizar o mapeamento de um vetor de características em um vetor de observação (ou vetor de símbolos). Os símbolos correspondem aos índices (dos vetores-código) gerados na representação (quantização vetorial) da sequência de características com o uso dos dicionários. Finalizando, tem-se a etapa de classificação realizada por Modelos Escondidos de Markov, na qual os caracteres são reconhecidos individualmente e combinados para formar a palavra. Testes experimentais foram realizados com uma base de dados construída especificamente para este fim, contendo amostras de manuscritos de4escritoresdistintos. Osistemadereconhecimentodepalavrasmanuscritasisoladas dependente do escritor obteve taxas de reconhecimento que variaram entre 83,31% a 92,96% dependendo do escritor analisado. Os resultados apresentados mostram que o sistema apresenta um ótimo desempenho quando utilizado para reconhecer palavras através dos modelos de caracteres.