Uma abordagem centrada na filtragem colaborativa para redução do custo computacional do método k-Nearest Neighbors.
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/6303 |
Resumo: | Com o surgimento da Web 2.0 o volume de informações disponíveis na Internet cresceu acentuadamente, tornando cada vez mais difícil para o usuário alcançar a informação desejada. Sistemas de recomendação surgem como uma alternativa a esse problema, sugerindo conteúdo personalizado. A filtragem colaborativa e uma das abordagens mais eficazes na área de recomendação. Dentre os algoritmos colaborativos. os modelos baseados em fatores latentes constituem o estado da arte na área. Entretanto, tais modelos não conseguem fornecer uma justificativa para o item recomendado, o que em determinados domínios pode tornar a recomendação desinteressante e facilmente ignorada pelo usuário. Diante desse contexto. uma alternativa interessante e o k-Nearest Neighbors (kNN). um método simples, popular e capaz de fornecer excelentes resultados. Essa técnica gera recomendações a partir das avaliações dos usuários mais similares (vizinhos mais próximos) ao usuário alvo. Apesar de sua eficácia. o kNN apresenta um custo computacional elevado ao ser executado em grandes bases de dados, tornando sua aplicação inviável em alguns domínios. Neste trabalho objetiva-se melhorar o desempenho do kNN a partir da restrição do espaço de busca dos vizinhos mais próximos. O método proposto utiliza uma heurística de seleção baseada na escolha dos usuários que mais avaliaram itens. Como resultado, constatou-se que utilizando apenas 15% dos usuários na busca dos vizinhos, consegue-se reduzir significativamente o custo computacional. porem mantendo alto nível de acurácia. |