Construção de um sensor virtual para a classificação de emissões de dióxido de enxofre em uma caldeira Kraft via algoritmo k-NN (k-Nearest Neighbours)

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Paolla Marlene Caetano da Cunha
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ENG - DEPARTAMENTO DE ENGENHARIA QUÍMICA
Programa de Pós-Graduação em Engenharia Química
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/38483
Resumo: Industrial development is one of the main factors for environmental regulations in general. Certifications that standardize management and process parameters have been consolidated worldwide and are now seen as mandatory for sustainable industrial operation. The development of data-driven models has been strengthened by the massive generation of data by industrial processes in general all over the world, given the advances in the areas of instrumentation, informatics, and databases. This advance then contributes to the spread of data science applications in the industrial sector. One sub-area of data science concerns machine learning methods, which are usually simple to implement and are directly obtained from data sets. This work explored a supervised k-nearest neighbours (KNN) classification problem, focusing on gas emissions that pollute human health and the environment. Specifically, it proposes the construction of a soft sensor based on data for monitoring and, consequently, controlling sulphur dioxide (SO2) emissions in chemical recovery boilers in the kraft pulp industry. Regarding the methodology, the behaviour of the method with one input variable, with subsets of predictors, and with an ensemble learning, for six classes of SO2 was presented. The results presented are satisfactory, which is important to generate confidence in industrial implementations. The ensemble learning showed the best performance, with accuracy of 92% and geometric mean of 94.75% over the (independent) test set.