Um método automático para o ajuste de segmentadores de imagens baseados em informação de textura e cor.

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: CARDOSO, Fernando Henrique Bezerra.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/4318
Resumo: O ajuste de segmentadores para a detecção de materiais específicos que compõem o conteúdo retratado por uma imagem digital é usualmente executado de forma manual, ou com pouco grau de automatização. A obtenção de segmentadores com base em aprendizagem normalmente envolve os seguintes passos: construir um conjunto de imagens segmentadas manualmente; analisar os melhores parâmetros - espaço de cores, profundidade de cor, tamanho da janela de pixels a ser considerada, dentre outras; ajustar um classificador que decide se cada pixel faz parte ou não da superfície do material. Uma vez que esta segmentação é geral mente um passo intermediário de inúmeras aplicações das áreas de Visão Computacional e de Processamento de Imagens, uma fraca automatização do processo faz com que esforço seja investido em uma tarefa secundária. Neste trabalho, é proposto um método de automatização do ajuste de segmentadores de materiais baseados em informação de cor e textura, utilizando redes neurais artificiais como estruturas de classificação, filtros de Gabor como descritores de textura e um algoritmo floodfill adaptado como etapa de pós-processamento. A descoberta dos melhores parâmetros dos filtros de Gabor e do algoritmo floodfill é realizada através da aplicação de um algoritmo genético. Uma avaliação experimental envolvendo a detecção de 3 classes de materiais (pele humana, grama e céu) foi realizada, e os segmentadores obtidos com o método proposto apresentaram resultados melhores (com relação à Medida-F) do que o método geral Naïve Bayes bem como métodos específicos para cada tipo de material, tendo sido demonstrada a generalidade do método proposto.