Otimização do processo de produção de cloro e soda cáustica com aplicação de técnicas de machine learning.
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Ciências e Tecnologia - CCT PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/32624 |
Resumo: | Na indústria de produção de cloro, soda cáustica e hidrogênio no Brasil, três tecnologias de células eletrolíticas são utilizadas comercialmente para esse fim: célula de mercúrio, diafragma e membrana. Nas células com tecnologia de diafragma, este desempenha um papel decisivo na eficiência da célula. Sua importância vai desde a eficiência energética da célula até aspectos relacionados à segurança operacional. Neste trabalho foram construídos modelos de aprendizado de máquina (ML) para predição do desempenho das células eletrolíticas, a partir dados industriais relativos as células à diafragma produzido pela UCS (Unidade de Cloro-Soda) da fábrica Braskem S/A, implantada no estado de Alagoas. Os modelos treinados apresentaram desempenho satisfatório na previsão do desempenho da célula a partir dos dados de fabricação do diafragma e de operação das células. O modelo Random Forest obteve desempenho superior com relação aos demais modelos, com acurácia superior a 90%, resultado importante que serve de base para a busca pela melhoria da performance do diafragma. Esse resultado confirma a viabilidade de aplicação de técnicas de aprendizado de máquinas na indústria de produção de cloro e soda cáustica, possibilitando a melhorias nos processos de produção. Outro resultado importante da modelagem desenvolvida foi a obtenção das variáveis de maior relevância para os modelos, viabilizando o controle dessas variáveis nos processos de fabricação e operação das células eletrolíticas, contribuindo para o incremento da sua performance. |