Sobre a existência de infinitas soluções com energia finita de uma equação elíptica em Sn.

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: CHAGAS, Jesualdo Gomes das.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Ciências e Tecnologia - CCT
PÓS-GRADUAÇÃO EM MATEMÁTICA
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1114
Resumo: Neste trabalho, estudamos a existência de infinitas soluções para o problema ∆u + |u| 4n−2 u = 0, u ∈ C 2(Rn), n ≥ 3, as quais possuem energia finita e que mudam de sinal. Para tanto, usaremos argumentos desenvolvidos por Ding [9]. Neste caso, resolveremos um problema, na esfera Sn, que é equivalente ao problema em questão.