Detalhes bibliográficos
| Ano de defesa: |
2016 |
| Autor(a) principal: |
Cardenas Diaz, Elkin Dario |
| Orientador(a): |
Não Informado pela instituição |
| Banca de defesa: |
Não Informado pela instituição |
| Tipo de documento: |
Tese
|
| Tipo de acesso: |
Acesso aberto |
| Idioma: |
por |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: |
|
| Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/45/45131/tde-30082016-001339/
|
Resumo: |
No presente trabalho consideramos o produto de uma variedade Riemanniana compacta sem bordo de curvatura escalar zero e uma variedade Riemanniana compacta com bordo, curvatura escalar zero e curvatura media constante no bordo, e fazemos uso da teoria de bifurcação para provar a existência de um numero infinito de classes conforme com, pelo menos, duas métricas Riemannianas não homotéticas de curvatura escalar zero e curvatura média constante no bordo, sobre a variedade produto. |