Classificação da hidrofobicidade em isoladores elétricos empregando o guia STRI e processamento digital de imagem.
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/26770 |
Resumo: | O guia STRI (Swedish Transmission Research Institute) de hidrofobicidade classifica as superfícies de isoladores de acordo com o ângulo de contato e/ou a quantidade de superfície molhada com água de forma subjetiva (método de pulverização). Neste trabalho é proposta uma ferramenta para o monitoramento e classificação automática da hidrofobicidade dos isoladores poliméricos. Algoritmos computacionais foram desenvolvidos para segmentação e classificação de imagens hidrofóbicas utilizando Processamento Digital de Imagem (PDI), Função de Densidade de Probabilidade (FDP) e Rede Neural Artificial (RNA). A hidrofobicidade foi determinada utilizando parâmetros das imagens hidrofóbicas obtidas por meio do método de pulverização. Os parâmetros de classificação utilizados foram: quantidade de regiões molhadas; área individual máxima; área total das regiões molhadas; distância média e máxima entre as regiões molhadas; maior fator de forma; e excentricidade mínima e máxima. A partir dos resultados obtidos foi observada uma relação matemática entre alguns parâmetros e a hidrofobicidade, sendo possível definir a hidrofobicidade com um conjunto mínimo de parâmetros. A análise e classificação da hidrofobicidade foi realizada por meio da FDP e RNA. O desempenho foi avaliado em um conjunto de dados com mais de 450 imagens e obteve-se uma taxa de acerto de aproximadamente 87% com a RNA e de 80% por meio da análise de limiar proveniente da FDP. |