Classificação da hidrofobicidade em isoladores elétricos empregando o guia STRI e processamento digital de imagem.

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: ALVES, Lidja Nayara Tavares.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/26770
Resumo: O guia STRI (Swedish Transmission Research Institute) de hidrofobicidade classifica as superfícies de isoladores de acordo com o ângulo de contato e/ou a quantidade de superfície molhada com água de forma subjetiva (método de pulverização). Neste trabalho é proposta uma ferramenta para o monitoramento e classificação automática da hidrofobicidade dos isoladores poliméricos. Algoritmos computacionais foram desenvolvidos para segmentação e classificação de imagens hidrofóbicas utilizando Processamento Digital de Imagem (PDI), Função de Densidade de Probabilidade (FDP) e Rede Neural Artificial (RNA). A hidrofobicidade foi determinada utilizando parâmetros das imagens hidrofóbicas obtidas por meio do método de pulverização. Os parâmetros de classificação utilizados foram: quantidade de regiões molhadas; área individual máxima; área total das regiões molhadas; distância média e máxima entre as regiões molhadas; maior fator de forma; e excentricidade mínima e máxima. A partir dos resultados obtidos foi observada uma relação matemática entre alguns parâmetros e a hidrofobicidade, sendo possível definir a hidrofobicidade com um conjunto mínimo de parâmetros. A análise e classificação da hidrofobicidade foi realizada por meio da FDP e RNA. O desempenho foi avaliado em um conjunto de dados com mais de 450 imagens e obteve-se uma taxa de acerto de aproximadamente 87% com a RNA e de 80% por meio da análise de limiar proveniente da FDP.