Redes neurais artificiais aplicadas aos totais mensais precipitados para gerar vazões médias mensais na bacia hidrográfica do rio Paraguaçu. .

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: GALDINO, Jurandir Ferreira.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Tecnologia e Recursos Naturais - CTRN
PÓS-GRADUAÇÃO EM METEOROLOGIA
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/4923
Resumo: Este trabalho teve o objetivo de modelar e gerar vazões médias mensais a partir de dados mensais de precipitação com base na técnica matemática de Redes Neurais Artificiais. A metodologia foi aplicada aos dados plúvio-hidrométricos da Bacia Hidrográfica do rio Paraguaçu – BA, localizada no Estado da Bahia ao Nordeste do Brasil. Foram utilizados 14 postos pluviométricos espacialmente distribuídos no âmbito da Bacia e um posto fluviométrico, chamado Argoim, na sua exutória. A rede feedforward backpropagation, escolhida como a melhor para representar a modelagem chuva-vazão, utilizou em sua arquitetura o algoritmo de Retropropagação Levenberg-Marquardt, com 30 neurônios na camada intermediária e a função de transferência tangente hiperbólica sigmóide (tansig) nas camadas intermediárias e de saída. Dos resultados obtidos nesta pesquisa, a melhor correlação foi à função (tansig1) 0.999, com coeficientes de regressão de 0,999; 0,997 e 0,996. Na previsão para dois anos, os valores médios de regressão foram: 0,999 na fase de treinamento, 0,982 na fase de validação e 0,995 na fase de teste. Já o MSE médio dos 15 postos foi de 25,519, considerando os picos mais elevados de vazão. Quando se avaliou o desempenho de todo o processo de treinamento das RNAs com os menores MSE, foi possível identificar o melhor desempenho para a RNA 4. Essa RNA apresenta o maior coeficiente de eficiência 0,999 e o menor REMQ, igual a 5,051 m³/s.