Identidades e polinômios centrais graduados para o produto tensorial pela álgebra de Grassmann.

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: SILVA, Jussiê Ubaldo da.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Ciências e Tecnologia - CCT
PÓS-GRADUAÇÃO EM MATEMÁTICA
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1255
Resumo: SendoG um grupo abeliano eR uma álgebraG-graduada, consideramos no produto tensorialR⊗E (sendoE a álgebra exterior de dimensão infinita) a (G×Z2)graduação natural, obtida a partir daG-graduação deR. Neste trabalho apresentamos resultados que relacionam as identidades graduadas e resultados que relacionam os polinômios centrais graduados das álgebrasR eR⊗E. Como aplicação obtemos a PI-equivalência entre as álgebrasM1,1(E)⊗E eM2(E), resultado que é parte do clássico Teorema do Produto Tensorial de Kemer. Também apresentamos descrições das identidades e dos polinômios centrais (Zn × Z2)-graduados da álgebra Mn(E), e das identidades e dos polinômios centrais Z2-graduados da álgebra E ⊗ E, considerando para esta última uma graduação diferente da usual. Para uma visualização mais confiáveis das formulas e sinais matemáticos deste resumo recomendamos o download do arquivo.