Análise acústica para classificação de patologias da voz empregando análise de componentes principais, redes neurais artificiais e máquina de vetores de suporte.

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: ESPINOLA, Sérgio de Brito.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Engenharia Elétrica e Informática - CEEI
PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/123
Resumo: Estima-se que um terço da força de trabalho humana dependa da voz para realização de seus ofícios. Procedimentos médicos avaliam a qualidade vocal do indivíduo sendo os mais usados aqueles baseados na escuta da voz (subjetivo) ou na inspeção das dobras (ou pregas) vocais por exames sofisticados (objetivos, porém invasivos e caros). A análise acústica da voz busca extrair medidas robustas para descrever vários fenômenos associados à produção da fala ou características intrínsecas do ser humano como frequência fundamental, timbre, etc. O presente estudo consiste na caracterização de um modelo de processamento digital de Voz para apoio ao diagnóstico no contexto da construção de sistemas de identificação automatizados de patologias da fala. Para análise da técnica proposta foi utilizada uma base de dados (base KAY) que foi estruturada por especialistas num arranjo de seis grupos de Patologias. A esse, acrescentado também um de vozes “Normal”. Assim, 182 vozes foram escolhidas, as quais dispunham de um catálogo indexado de cerca de 33 descritores, para cada voz, calculados da elocução da vogal \a\ sustentada. Ao selecionar combinações desses descritores – como perturbações em frequência (jitter), em amplitude (shimmer) etc, este estudo encontrou evidências estatísticas e mostrou ser possível: a) Separar vozes normais das patológicas – esperado, b) Separar patologias específicas (Paralisia, Edema de Reinke, Nódulos) com acurácia de 100% (para a grande maioria dessas combinações) e cerca de 92% (para Nódulos contra Reinke); c) Discriminá-las por meio de classificadores (redes neurais artificiais e máquina de vetores de suporte) e reduzir a dimensionalidade e complexidade (quantidade de dados) via técnica de análise de componentes principais (ACP) sobre esses descritores para a separação intra patologias; e d) Testes estatísticos com os grupos locais confirmaram também limiares de indícios de Anormalidade presentes na literatura. A utilização de menor quantidade de descritores – obtida pós ACP (compressão) – mostrou-se também eficiente (mesmas taxas de acurácia).