Análise acústica para classificação de patologias da voz empregando análise de componentes principais, redes neurais artificiais e máquina de vetores de suporte.
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/123 |
Resumo: | Estima-se que um terço da força de trabalho humana dependa da voz para realização de seus ofícios. Procedimentos médicos avaliam a qualidade vocal do indivíduo sendo os mais usados aqueles baseados na escuta da voz (subjetivo) ou na inspeção das dobras (ou pregas) vocais por exames sofisticados (objetivos, porém invasivos e caros). A análise acústica da voz busca extrair medidas robustas para descrever vários fenômenos associados à produção da fala ou características intrínsecas do ser humano como frequência fundamental, timbre, etc. O presente estudo consiste na caracterização de um modelo de processamento digital de Voz para apoio ao diagnóstico no contexto da construção de sistemas de identificação automatizados de patologias da fala. Para análise da técnica proposta foi utilizada uma base de dados (base KAY) que foi estruturada por especialistas num arranjo de seis grupos de Patologias. A esse, acrescentado também um de vozes “Normal”. Assim, 182 vozes foram escolhidas, as quais dispunham de um catálogo indexado de cerca de 33 descritores, para cada voz, calculados da elocução da vogal \a\ sustentada. Ao selecionar combinações desses descritores – como perturbações em frequência (jitter), em amplitude (shimmer) etc, este estudo encontrou evidências estatísticas e mostrou ser possível: a) Separar vozes normais das patológicas – esperado, b) Separar patologias específicas (Paralisia, Edema de Reinke, Nódulos) com acurácia de 100% (para a grande maioria dessas combinações) e cerca de 92% (para Nódulos contra Reinke); c) Discriminá-las por meio de classificadores (redes neurais artificiais e máquina de vetores de suporte) e reduzir a dimensionalidade e complexidade (quantidade de dados) via técnica de análise de componentes principais (ACP) sobre esses descritores para a separação intra patologias; e d) Testes estatísticos com os grupos locais confirmaram também limiares de indícios de Anormalidade presentes na literatura. A utilização de menor quantidade de descritores – obtida pós ACP (compressão) – mostrou-se também eficiente (mesmas taxas de acurácia). |