Modelagem e simulação fluidodinâmica da dispersão de poluentes na microescala atmosférica.

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: GOMES, Valério de Araújo.
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Campina Grande
Brasil
Centro de Ciências e Tecnologia - CCT
PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA
UFCG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/328
Resumo: O desenvolvimento de modelos matemáticos aplicados a simulação de dispersão de poluentes na atmosfera, utilizando fluidodinâmica computacional, tem sido cada vez mais intenso em função da evolução tecnológica das rotinas computacionais. Porém, o maior desafio ainda é o entendimento e a modelagem adequada dos fenômenos que caracterizam a dispersão quando ocorrem em regime turbulento. Para o fechamento dos termos que representam a turbulência, o modelo de duas equações k- padrão é o que mais largamente tem sido utilizado. Contudo, este é um modelo desenvolvido a altos números de Reynolds e apresenta limitações quando o escoamento ocorre próximo das paredes do domínio. Desta forma, quando os efeitos de escoamentos a baixos números de Reynolds devem ser levados em consideração (quando a viscosidade molecular não pode ser desprezada), funções amortecedoras devem ser inseridas resultando em uma espécie de k- para baixos números de Reynolds. Com isso, esta tese tem como objetivo apresentar o desenvolvimento de um modelo de dispersão atmosférica matemático, tendo como contribuição científica o desenvolvido de equações empíricas para definição da função amortecimento (𝑓µ) no cálculo da viscosidade turbulenta, em complemento as funções “paredes” utilizadas comumente pelos códigos computacionais comerciais, corrigindo desta forma o modelo k- padrão. Como ferramenta computacional, foi utilizado o software CFX® para as simulações fluidodinâmicas. Para validação do modelo, foram utilizados os dados do experimento de Copenhagen. Os índices estatísticos do modelo também foram comparados com os resultados de outras pesquisas encontradas na literatura. Os resultados mostraram que a metodologia proposta foi capaz de simular o experimento de campo com um nível bastante satisfatório, atingindo um erro quadrático médio normalizado (NMSE) de 0,02 e um fator de correlação (Cor) de 0,95.