Previsão automática de evasão estudantil: um estudo de caso na UFCG.
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/800 |
Resumo: | A evasão estudantil é uma das maiores preocupações dos institutos de ensino superior brasileiros já que ela pode ser uma das causas de desperdício de recursos da Universidade. A previsão dos estudantes com alta probabilidade de evasão, assim como o entendimento das causas que os levaram a evadir, são fatores cruciais para a definição mais efetiva de ações preventivas para o problema. Nesta dissertação, o problema da detecção de evasão foi abordado como um problema de aprendizagem de máquina supervisionada. Utilizou-se uma amostra de registros acadêmicos de estudantes considerando-se todos os 76 cursos da Universidade Federal de Campina Grande com o objetivo de obter e selecionar atributos informativos para os modelos de classificação e foram criados dois tipos de modelos, um que separa os estudantes por cursos e outro que não faz distinção de cursos. Os dois modelos criados foram comparados e pôde-se concluir que não fazer distinção de alunos por curso resulta em melhores resultados que fazer distinção de alunos por curso. |