Diagnóstico de faltas em linhas de transmissão baseado em redes neurais artificiais e transformada wavelet.
Ano de defesa: | 2005 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/10838 |
Resumo: | Um método baseado em redes neurais artificiais e transformadas wavelet para a detecção e classificação de faltas em linhas de transmissão e proposto. A analise e feita sobre os sinais de tensão e corrente capturados pelos registradores digitais de perturbação. A detecção da falta e a determinação de sua duração são realizadas por um conjunto de regras construídas a partir da analise dos sinais de corrente nos domínios do tempo e wavelet. Nessa fase, uma falta e diferenciada de distúrbios associados a qualidade da energia elétrica, tais como afundamentos de tensão e transitórios de chaveamento. No caso de falta, sua classificação e realizada por meio de uma rede neural, a partir do reconhecimento dos padrões das tensões e correntes no domínio do tempo. 0 método foi avaliado para situações de faltas simuladas e reais em linhas do sistema de transmissão da CHESF, apresentando bons resultados em ambos os casos. |