Teoria e aplicação de support vector machines à aprendizagem e reconhecimento de objetos baseado na aparência.
Ano de defesa: | 2002 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/4265 |
Resumo: | Support Vector Machines (SVM) é uma técnica de aprendizagem de máquina derivada de duas fundamentações sólidas: Teoria da Aprendizagem Estatísta e Otimização Matemática. SVM têm sido recentemente aplicado com sucesso a uma variedade de problemas que vão desde o reconhecimento de caracteres ao reconhecimento de objetos baseado na aparência. Alguns dos motivos para esse sucesso estão relacionados ao fato dessa técnica exibir bom desempenho de generalização em muitas bases de dados reais, é bem fundamentada teóricamente, o processo de treinamento elimina a possibilidade de mínimos locais, existem poucos parâmetros livres para ajustar e a arquitetura não precisa ser encontrada por experimentação. Entretanto, por tratar-se de uma abordagem relativamente nova, livros-texto e artigos estão geralmente disponíveis em uma linguagem que não é facilmente acessível para Cientistas da Computação. Portanto, um dos objetivos desta dissertação é prover uma introdução sobre SVM que apresente os conceitos e teoria essenciais à técnica e que seja mais didática. Estratégias de reconhecimento de objetos com base na aparência se aplicam a problemas em que há dificuldades na obtenção de modelos geométricos dos objetos, desde que as imagens utilizadas não apresentem oclusões. Algumas técnicas de aprendizagem de máquina têm sido aplicadas a este problema, tais como: PCA (Principal Component Analysis), PAC (Probably Approximately Correct) e Redes Neurais, mas nenhuma mostrou-se tão promissora quanto SVM. Dentro desse contexto, esta dissertação objetiva investigar a aplicação de SVM ao reconhecimento de objetos baseado na aparência. Apresenta resultados práticos de classificação utilizando inicialmente uma pequena base de dados e, em seguida, explorando todo o poder da técnica em uma base de dados relativamente grande. Esta dissertação também descreve resultados experimentais usando diferentes variações da técnica e compara o desempenho de reconhecimento de SVM com o desempenho de Redes Neurais do tipo Multilayer Perceptron Backpropagation. |