[en] A SOFTWARE ARCHITECTURE TO SUPPORT DEVELOPMENT OF MEDICAL IMAGING DIAGNOSTIC SYSTEMS
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34650&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34650&idi=2 http://doi.org/10.17771/PUCRio.acad.34650 |
Resumo: | [pt] O apoio diagnóstico de exames médicos por imagem utilizando técnicas de Inteligência Artificial tem sido amplamente discutido e pesquisado academicamente. Diversas técnicas computacionais para segmentação e classificação de tais imagens são continuamente criadas, testadas e aperfeiçoadas. Destes estudos emergem sistemas com alto grau de especialização que se utilizam de técnicas de visão computacional e aprendizagem de máquina para segmentar e classificar imagens de exames utilizando conhecimento adquirido através de grandes coleções de exames devidamente laudados. No domínio médico há ainda a dificuldade de se conseguir bases de dados qualificada para realização da extração de conhecimento pelos sistemas de aprendizagem de máquina. Neste trabalho propomos a construção de uma arquitetura de software que suporte o desenvolvimento de sistemas de apoio diagnóstico que possibilite: (i) a utilização em múltiplos tipos exames, (ii) que consiga segmentar e classificar, (iii) utilizando não só de estratégias padrão de aprendizado de máquina como, (iv) o conhecimento do domínio médico disponível. A motivação é facilitar a tarefa de geração de classificadores que possibilite, além de buscar marcadores patológicos específicos, ser aplicado em objetivos diversos da atividade médica, como o diagnóstico pontual, triagem e priorização do atendimento. |