Número de dominação romana em grafos

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Araújo, Samuel Nascimento de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/21822
Resumo: In a Roman domination of a graph, vertices are assigned a value from {0,1,2} in such a way that every vertex assigned the value 0 is adjacent to a vertex assigned the value 2. The Roman domination number is the minimum possible sum of all values in such an assignment. In this dissertation, we show the history of the problem and prove that the Roman domination number is NP-Complete even for induced subgraphs of grids and it is APX-hard even for bipartite graphs with maximum degree 4. We also prove that the Roman domination number is fixed parameter tractable for graphs with bounded local treewidth, as graphs with bounded maximum degree or bounded genus (like planar graphs or toroidal graphs). We also obtain complexity results when we consider digraphs as an input for the problem such as bipartite tournaments and planar digraphs.