Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Sousa, Flaviano Frota |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/24766
|
Resumo: |
Many are the known results involving the groups of numbers elds and many are the open problems. We know that the group of classes of a number fields is finite and abelian. In this paper we present some results about the group of the classes of the quadratic fields. It is known that for every intergers n greater than zero there are finite quadratic fields, both real and imaginary, whose class groups have a cyclic subgroup of order n. For an arbitrary abelian group G of order n, the existence or not of finite quadratic fields with groups of ideal classes having a subgroup isomorphic to G is an open problem. Particularly for non-cyclic finite abelian groups G, Kwang-Seob Kim has proved that there are finite real quadratic bodies in G =Z/nZ x Z/nZ: Whose groups of ideal classes contains a subgroup isomorphic to G and that is G = Z/nZ x Z/nZxZ/nZ then there are finite imaginary quadratic cups whose groups of ideal classes contain a subgroup isomorphic to G. The theorem of Kwang-Seob Kim is the main result presented in this dissertation. |