Artrópodes e atributos microbiológicos do solo em cultivo de fruteiras no Vale do Curu - CE

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Araújo, Jackson de Lima
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/19329
Resumo: A major concern related to agricultural management systems used by the man lies on the effects on biological processes in the soil, whose action within ecosystems aiming at the farm, modifies the intensity of these processes under use of techniques that exclusively aim to maximize crop yield. One of the challenges of research in soil biology is precisely understand the impacts on the complex interactions of all soil organisms at the community level by the management that are critical in maintaining soil quality. The objective of this work was to evaluate the influence of management practices on fruit trees (mango, guava and coconut trees) in the composition and distribution of soil arthropods (edaphic macrofauna, mesofauna) and on microbial biomass, the activity and interaction with the chemical, physical and environmental attributes. The study of soil arthropods began in July 2013 and followed until May 2014, with measurements at four periods. Microbiological soil activities were evaluated by the determination of microbial soil properties (RBS, CBM, NBM, NBM / N, qCO2 and qMIC). It was found that the soil arthropods were sensitive to changes arising from different soil tillage systems, allowing it to be used as an important tool to apply as bio-indicators of the quality of edaphic system. The system with guava cultivation proved to be unstable over time in relation to the structure of the community of soil arthropods. The system with coconut tree cultivation allows for better soil quality, increase in abundance and species richness of invertebrate macrofauna. The microbial biomass carbon (MBC), microbial biomass nitrogen (NBM) and the metabolic quotient (qCO2) were the main microbiological soil properties responsible for identifying dissimilarities between areas. Correlations between microbiological and faunal characteristics of the soil were low with significant correlations only between Collembola, NBM and NBM / N.