Expoente de Lojasiewicz: aplicação à relação de equivalência de polinômios no infinito

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Martins, Samuel Honório
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.ufc.br/handle/riufc/74476
Resumo: We present the Lojasiewicz exponent at infinity, we show that this is a rational number for polynomial maps F: Cn → Cm, n ≥ 2. We also show that, for this case, the exponent is attained in the set of z ∈ Cn, such that one of its coordinate functions is zero. Furthermore, we define the analytic equivalence relation of functions at infinity and use the exponent of Lojasiewicz to show that in the complement of a proper algebraic set of polynomials of degree less than or equal to a certain fixed degree, there are only a finite number of equivalence classes.