On some boosted methods for DC programming and the extension of the DCA to hadamard manifolds
Ano de defesa: | 2021 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
Universidade Federal de Goiás
Instituto de Matemática e Estatística - IME (RG) Brasil UFG Programa de Pós-graduação em Matemática (IME) |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://repositorio.bc.ufg.br/tede/handle/tede/11893 |
Resumo: | Nesta tese são apresentados alguns novos métodos para otimização de funções DC. O primeiro deles, denominado BSSM, é proposto para resolver problemas de otimização DC sobre Rn onde a primeira componente DC é diferenciável a a segunda é possivelmente não diferenciável. O segundo método, que será chamado de nmBDCA, é uma extensão não monótona do método BDCA para lidar com problemas de otimização DC em Rn onde ambas as componentes DC são não diferenciáveis. O terceiro método é uma combinação do BSSM com o nmBDCA para tratar de problemas de otimização DC sobre um conjunto convexo fechado C com restrições lineares, onde a primeira componente DC da função objetivo é a soma de uma função convexa suave com uma função convexa não diferenciável, e a segundo componente DC é não diferenciável. O último método apresentado nesta tese é uma extensão do DCA para o contexto da otimização de funções DC em variedades de Hadamard. |