Nitrous oxide emissions and metal biogeochemistry in coastal wetland soils in response to bioturbation by Ucides cordatus.

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Araújo Júnior, José Moacir de Carvalho
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/21598
Resumo: Coastal wetlands, among them the mangroves, are ecosystems with high biodiversity. In these environments, the crabs stand out both for its large number of species as by its economic and ecological importance, mainly due to the dens formation process (bioturbation. In this work, the effects of bioturbation by Ucides cordatus crabs from the Jaguaribe River mangrove (Ceará, Brazil) were analyzed under the concentrations of the different biogeochemical forms of the iron, zinc and manganese metals in the nearby soil and in the tissues of these animals, besides the variations in the (N2O) in areas with and without these crustaceans, comparing the values found between the rainy and dry periods. Soil samples were collected at low tide period in the demarcated two collection areas, one with and one without crabs. Measurements of bioecological parameters of crabs, soil physical and chemical parameters and concentrations of the metals associated with the different soil fractions (exchangeable, carbonate, ferridrite, lepidocrocite, goethite and pyrite) and Ucides cordatus crab Determination of the N2O flow. The results clearly showed a significantly greater variation of bioturbation activity in the dry period, with consequent increase in oxidation and acidification of the soil in the areas with crab. The more oxidized forms of the metals were predominantly larger in the area with crab burrows in relation to the control area, while those of pyrite were smaller. However, the emission of nitrous oxide fluxes was higher in the control area in both climatic periods, which indicates that the bioturbation activity of the crab promotes reduction of the emissions of this gas. The results allowed us to understand the role of bioturbation in GHG emissions and dynamics of biogeochemical processes in coastal wetlands soils, and identify possible seasonal variations in these values and the determination of GHG emissions and contamination of soil and crabs in these areas by trace metals, to improve environmental monitoring.