Uma análise sobre o impacto de dados faltantes no desempenho de métodos de aprendizado de máquina

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Costa, Jean Carllo Jardim
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/41653
Resumo: The occurrence of missing data is a recurrent problem and it has aroused the interest of researches over the last decades. Hence, many imputation methods have been proposed in recent years. In this dissertation, we present a study about the impact of the application of several imputation methods on the performance of machine learning algorithms, for both classification and regression. The result obtained shows that the imputation algorithms can have a relevant impact on the performance of classification and regression algorithms depending on the percentage of missing data. In addition, a model for the recommendation of data imputation algorithms is presented, which compares three classifiers (Random Forests, Gradient Boosting and Support Vector Machine) in the development of this task where both have good results.