Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Lima, Francisco Marcone |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/28228
|
Resumo: |
The transparent conductor oxide films are a class important of materials because exhibit both transparency and electronic conductivity simultaneously. Although a large number of works on preparation using acid and characterization on that materials have seen reported over the years, but there seems not a single work on the theme. In the present work was developed a systematic process for the preparation of transparent conductor oxide films (number patent BR1020160302633) and characterization. Together, the materials here described were composed of a group of two different films, one with fluorine doped tin oxide and other with addition of copper. All films were tailored on face of preheated glass substrates at 600oC. The spray pyrolysis technique was used. The experimental arrangement was a furnace with ceramic ohmic heater, glass substrates, and precursor solutions, spray nozzle and air compressor. The precursor solutions with tin chloride dehydrate, ammonium fluorine and deionized water were used for obtain fluorine doped tin oxide films. While that from of the tin chloride dehydrate, ammonium fluorine, copper chloride dehydrate deionized water was tailored the other type. Thus, fluorine doped tin oxide films were prepared with different amount of deionized water, in range about 7 - 10 mL, which the amount of source for tin and fluorine was constant. After to find the optimum amount of water, it was fixed constant in the preparation of fluorine doped tin oxide films with different amount of copper. On the characterization, the discussion was in direction of both solution concentration and copper effects on the electrical, optical and structural properties of the fluorine doped tin oxide films. The mean characterization of films was sheet resistance, ultraviolet-visible transmittance and Mott-Schottky method measurements. In the complementary characterization was used optical thickness and band gap, scan electronic microscopy, X-rays diffraction and energy edge. From 500 nm up to 800 nm, the transmittance range was about 60 - 80% for all samples of films. From the electrical measurement, it was determined that sheet resistance range about 17.60 - 19.40 Ω/ □ on influence of solution concentration and 20.20 - 35.80 Ω/ □ in function of copper concentration. The Mott- Schottky showed all the films as n-type semiconductors. Scan electronic microscopy showed that the experimental variations lead to morphologic range. From X-rays diffraction, all the films have only characteristic peaks of the tin dioxide, it was understood that possibly the amounts of fluorine and copper were as doping. Aftercharacterization, the products two were used in the dye-sensitized solar cells assembly. The photovoltaic characterizations of cells were made by current density versus voltage curves and Francisco Mott-Schottky (number patent BR1020160302617). The results showed that good transparency can be achieved in the fluorine doped tin oxide films by the addition of cooper. But, ability to create multication films without significantly degrading the electronic conductivity can not be achieved. Possibly, low electronic conductivity in the multication films was due degradation in the electrical transport parameters. But, the multication films showed potential for photovoltaic application. |