Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Rodrigues, Rondinelly Coelho |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/59231
|
Resumo: |
The use of models to predict company insolvency and bankruptcy are common themes in the literature. It is in the interest of managers and other stakeholders, such as shareholders, to use indicators to try to identify whether a company is close to bankruptcy or not. The objective of this work is to use an econometric model to predict insolvency. The post-lasso logit regression model was used to predict the insolvency of Brazilian companies listed on B3 for the years 2018 and 2019. The data used consist of the financial statements of these companies. As explanatory variables, accounting indices from the literature were used. The year 2019 was used to classify between solvent and insolvent companies, while the year 2018 was used to estimate the models, so that there is a time difference between the accounting indicators and the insolvency event. For comparative purposes, two other logit models with different variables were estimated. The results show good predictive performance of the models, as well as a good fit to the data. The post-lasso logit model had the best predictive performance when compared to the other two models, with the correctly predicted percentage, sensitivity and specificity all above 90%. |