Transporte de partículas em canais catraca

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Cisne Júnior, Roberto Lima da Costa
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/12887
Resumo: In this work we study the transport process of fluid flow and mass through channels that are characterized by periodic structures, namely ratchet channels. In the first part of this work, we approach a brief discussion on the characteristics of the flow in smooth channels, since they have simple analytical solution, and may help us understand the fluid flow through more complex channels. Then we study the fluid flow in ratchet channels, and we compare the results obtained for the fluid flow through smooth and ratchet channels, observing some similarities and differences between both of them. We show that the nature of the geometry of the ratchet channel adds a degree of complexity to the problem of the fluid flow, that affects the properties of the velocity and pressure fields. Moreover, we inquire into another aspect of the transport process, namely the transport of massive particle dragged by a fluid that flows in the interior of the ratchet channels previously mentioned. We show some results that indicate a certain typical similatiry between ratchet and smooth channels. However, the ratchet channels possess a structure that allows the break of symmetry in relation of the two only allowed directions of flow. In this way, the nature of the particle transport process can be affected by this break of simmetry. The aim of this work is to analyze the dynamics of particle transport into a ratched channel and determine which mechanisms play a fundamental role in this process.