Redes neurais artificiais e softness químico para classificação de grupos de moléculas : aplicação em aminoácidos.

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Rene Felipe Keidel Spada
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto Tecnológico de Aeronáutica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=1141
Resumo: Nesse trabalho os 20 aminoácidos foram classificados, a fim de investigar possíveis aplicações em dispositivos. Como critério de classificação foi utilizada uma propriedade molecular denominada softness químico. A classificação foi feita por uma rede neural artificial denominada Mapa Auto-Organizável. Esse estudo permitiu identificar similaridades entre diferentes grupos químicos presentes em aminoácidos. Os aminoácidos que apresentam grupos hidroxílicos (OH) foram classificados como similares aos aminoácidos alifáticos, que apresentam apenas carbono e hidrogênio em suas cadeias laterais. O aminoácido histidina, que apresenta uma estrutura cíclica do tipo imidazol (C3H4N2), foi classificado como similar aos aminoácidos aromáticos fenilalanina, triptofano e tirosina, que apresentam um anel do tipo fenil (C6H5) em suas estruturas. Por esse motivo foi investigada a relação entre softness e aromaticidade. Este conceito ainda não possui uma definição formal, pois ele se relaciona com diversas propriedades físicas e químicas, por esse fato não pode ser medido experimentalmente ou calculado teoricamente. Nesse trabalho mostra-se o softness como candidato para explicar este conceito, pois se relaciona com diferentes critérios de aromaticidade.