Caracterização de compacidade fraca em espaços de Banach e sequências básicas em espaços localmente convexos

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Paula Júnior, Valdir Ferreira de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.repositorio.ufc.br/handle/riufc/22412
Resumo: In this thesis we will characterize weak-compactness of bounded, closed convex sets using some variations of the fixed point property. We will initially do this, in Banach spaces, using the Generic Fixed Point Property (G-FPP) for the class of affine bi-Lipschitz maps. Then introduce a relaxation of this notion (WG-FPP) and proved that a closed convex bounded subset of a Banach space is weakly compact iff it has the WG-FPP for affine 1-Lipschitz maps. We also explore the existence of basic sequences and almost-biorthogonal systems with topological constraints and some of their applications in the framework of locally convex spaces.