Detalhes bibliográficos
Ano de defesa: |
2001 |
Autor(a) principal: |
Gomes, Carlos Antonio Silva |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Não Informado pela instituição
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.repositorio.ufc.br/handle/riufc/2429
|
Resumo: |
In practical applications of active and passive solar energy, or other construction purposes, the coating material which absorbs solar radiation has an important role as regards the absorption and emission of thermal radiation and, directly influencing the cost benefit the product. Surface coatings for solar radiation-absorbing plate or selective surfaces, changing the relationship of gain and loss of energy of the equipment and, therefore, the performance of the various coatings available types and their costs as well as potential areas of application should be known. In general, flat plate collectors operate without selective surfaces at temperatures below 100 ° C, and for the heating of water in drying processes, etc.. There are practical applications such as solar cookers, refrigeration systems, thermal desalination plants where they are needed at very high temperatures that are only achieved by the use of selective surfaces. For high efficiency, solar collectors should have a maximum absorbance in the solar spectrum while maintaining a minimum infrared emittance. This paper presents a comparative study of selective surfaces for solar collectors used in the larger centers that use renewable energy. Shows the experimental measurements of the temperature and the plates absorbing solar radiation and directly incident on the plates as a function of time. Samples were tested in environmental conditions in Fortaleza. The experimental values were used in determining values for the emissivity, after conducting an energy balance in steady state in these samples. The stagnation temperatures in the samples was also calculated showing the performance of these materials. Are also presented microscopic analysis (scanning electron microscopy) of different surfaces. The results clearly show the performance of samples when exposed to solar radiation and the procedure developed for this work may be used in determining an average value for the thermal emissivity measurements from simpler. |