Desvendando a crise da incomensurabilidade. Uma proposta para a educação básica utilizando frações contínuas

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Silva, Anderson Adelmo da
Orientador(a): Lima, Maurício Firmino Silva
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do ABC
Programa de Pós-Graduação: Mestrado Profissional em Matemática em Rede Nacional - PROFMAT
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Link de acesso: http://biblioteca.ufabc.edu.br/index.php?codigo_sophia=103907&midiaext=73354
http://biblioteca.ufabc.edu.br/index.php?codigo_sophia=103907&midiaext=73354/index.php?codigo_sophia=103907&midiaext=73353
Resumo: Esta dissertação apresenta as Frações Contínuas como facilitador para a compreensão do conjunto dos números racionais e o conjunto dos números irracionais. Busco retomar aspectos históricos sobre os segmentos comensuráveis e incomensuráveis, utilizando os convergentes das frações contínuas finitas e infinitas para compreensão da importância de uma boa aproximação. Assim, apresento como sugestão que esse tema seja incluído na Educação Básica, não como um tema curricular, mas como uma rica ferramenta para aplicação em diversos conteúdos já previstos nos anos finais do Ensino Fundamental e no Ensino Médio.