Calibração multivariada no infravermelho próximo para predição da composição química de correntes petroquímicas do processo de produção de aromáticos

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Santos, Jamile Batista dos
Orientador(a): Teixeira, Leonardo Sena Gomes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto de Química
Programa de Pós-Graduação: Programa de Pós Graduação em Química
Departamento: Não Informado pela instituição
País: brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufba.br/ri/handle/ri/20272
Resumo: Este trabalho teve como objetivo desenvolver um método analítico para predição da composição química de amostras geradas no processo de produção de aromáticos utilizando a Espectroscopia no Infravermelho Próximo (NIR) associado a técnicas de calibração multivariada.Os conjuntos de calibração e validação foram selecionados através do algoritmo de Kennard-Stone e a técnica estatística utilizada para a calibração multivariada foi a Regressão por Mínimos Quadrados Parciais (PLS). As regiões espectrais selecionadas na etapa de construção dos modelos foram obtidas através do algoritmo de seleção de variáveis por regressão de mínimos quadrados parciais por intervalo (iPLS). Para escolher as condições experimentais mais adequadas para a modelagem PLS foi realizado um planejamento experimental com matriz Doehlert usando três variáveis (pré-processamento, faixa de comprimento de onda e seleção de variáveis espectrais com o algoritmo Jack-knife). Foram desenvolvidos modelos de calibrações para a previsão da concentração de não aromáticos, benzeno, tolueno, etil-benzeno, para-xileno, meta- xileno, orto-xileno, aromáticos C8s+ e aromáticos C9s+ em amostras de correntes petroquímicas; e os RMSEPs encontrados foram 0,88; 0,38; 2,43; 1,19; 1,08; 1,13; 1,29; 3,87; 1,47% (m/m), respectivamente. O desempenho do melhor modelo de calibração de cada propriedade foi avaliado por meio de parâmetros da validação externa. Com os resultados obtidos, pôde-se demonstrar que os modelos construídos foram satisfatórios e os erros encontrados são aceitáveis para controle de processo na indústria.