Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Matos, Márcia Graci de Oliveira |
Orientador(a): |
Lobão, Thierry Corrêa Petit |
Banca de defesa: |
Lobão, Thierry Corrêa Petit,
Sica, Carmela,
Souza, Manuela da Silva,
Veloso, Paula Murgel,
Ferraz, Raul Antonio |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Instituto de Matemática. Departamento de Matemática
|
Programa de Pós-Graduação: |
Doutorado em Matemática UFBA/UFAL
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.ufba.br/ri/handle/ri/22836
|
Resumo: |
Em um anel R, o conjunto de todos os elementos quaserregulares determina o, assim chamado, grupo adjunto G, cuja operação, conhecida como círculo, foi definida por S. Perlis como x_y = x+y+xy: Este trabalho, tem como objetivo determinar a estrutura do grupo adjunto G de um anel finito R e verificar a validade da propriedade do normalizador em anéis de grupo integrais (Nor) com respeito ao grupo geral linear. Explorando a decomposição do anel R em suas pi-componentes, concluímos que G é produto direto dos grupos adjuntos, Gpi , em cada pi-componente Rpi do anel; demonstraremos então, que para cada fator Gpi , o quociente Gpi=pRpi , admite uma decomposição como o produto semidireto (munido da operação círculo) de Jpi=pRpi , em que Jpi é o radical de Jacobson do anel Rpi , por um produto direto de grupos gerais lineares. Uma vez estabelecida esta estrutura, aplicamos técnicas próprias da teoria de anéis de grupo integrais e mostramos a validade de (Nor) para o grupo geral linear, GL(n; Fqi), onde Fqi é um corpo finito e qi = PI n. Provamos que vale (Nor) para cada fator GL(n; Fqi) e portanto concluímos que o produto direto desses fatores, é solução para (Nor). |