A estrutura do grupo adjunto e a propriedade do normalizador

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Matos, Márcia Graci de Oliveira
Orientador(a): Lobão, Thierry Corrêa Petit
Banca de defesa: Lobão, Thierry Corrêa Petit, Sica, Carmela, Souza, Manuela da Silva, Veloso, Paula Murgel, Ferraz, Raul Antonio
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto de Matemática. Departamento de Matemática
Programa de Pós-Graduação: Doutorado em Matemática UFBA/UFAL
Departamento: Não Informado pela instituição
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufba.br/ri/handle/ri/22836
Resumo: Em um anel R, o conjunto de todos os elementos quaserregulares determina o, assim chamado, grupo adjunto G, cuja operação, conhecida como círculo, foi definida por S. Perlis como x_y = x+y+xy: Este trabalho, tem como objetivo determinar a estrutura do grupo adjunto G de um anel finito R e verificar a validade da propriedade do normalizador em anéis de grupo integrais (Nor) com respeito ao grupo geral linear. Explorando a decomposição do anel R em suas pi-componentes, concluímos que G é produto direto dos grupos adjuntos, Gpi , em cada pi-componente Rpi do anel; demonstraremos então, que para cada fator Gpi , o quociente Gpi=pRpi , admite uma decomposição como o produto semidireto (munido da operação círculo) de Jpi=pRpi , em que Jpi é o radical de Jacobson do anel Rpi , por um produto direto de grupos gerais lineares. Uma vez estabelecida esta estrutura, aplicamos técnicas próprias da teoria de anéis de grupo integrais e mostramos a validade de (Nor) para o grupo geral linear, GL(n; Fqi), onde Fqi é um corpo finito e qi = PI n. Provamos que vale (Nor) para cada fator GL(n; Fqi) e portanto concluímos que o produto direto desses fatores, é solução para (Nor).