Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Ramos, Ana Carolina Dias do Amaral |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-29082013-101932/
|
Resumo: |
Estudamos sistemas lineares em grupos de Lie introduzido por Ayala e Tirao em [3]. Esta nova classe de sistemas de controle é obtido através de uma generalização aos grupos de Lie de campos de vetores lineares em espaços vetoriais. Eles extendem não somente a classe bem conhecida de sistemas lineares em \'R POT. n\' mas também sistemas invariantes em grupos de Lie e os avanços recentes mostram que eles aparecem como modelos para ampla classe de sistemas de controle proveniente de diversas áreas de ciência e engenharia. Focamos nossa atenção em normalizador, que tem tido um papel fundamental em formulação de sistemas lineares em grupos de Lie, e lidamos com curvas integrais de seus campos vetoriais. Finalmente mostramos que sob certas hipóteses sistemas lineares em grupos de Lie possuem a propriedade de controlabilidade local a partir de identidade do grupo |