Sistemas de controle lineares em grupos de Lie

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Ramos, Ana Carolina Dias do Amaral
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-29082013-101932/
Resumo: Estudamos sistemas lineares em grupos de Lie introduzido por Ayala e Tirao em [3]. Esta nova classe de sistemas de controle é obtido através de uma generalização aos grupos de Lie de campos de vetores lineares em espaços vetoriais. Eles extendem não somente a classe bem conhecida de sistemas lineares em \'R POT. n\' mas também sistemas invariantes em grupos de Lie e os avanços recentes mostram que eles aparecem como modelos para ampla classe de sistemas de controle proveniente de diversas áreas de ciência e engenharia. Focamos nossa atenção em normalizador, que tem tido um papel fundamental em formulação de sistemas lineares em grupos de Lie, e lidamos com curvas integrais de seus campos vetoriais. Finalmente mostramos que sob certas hipóteses sistemas lineares em grupos de Lie possuem a propriedade de controlabilidade local a partir de identidade do grupo