Uma abordagem deep learning para reconhecimento de expressões faciais.

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Canário, João Paulo Pereira de Sá
Orientador(a): Oliveira, Luciano Rebouças de
Banca de defesa: Rios, Tatiane Nogueira, Ferreira, Adonias Magdiel Silva
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto de Matemática. Departamento de Ciência da Computação
Programa de Pós-Graduação: Mestrado Multiinstitucional em Ciência da Computação
Departamento: Não Informado pela instituição
País: brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufba.br/ri/handle/ri/19384
Resumo: Expressões faciais são o resultado de mudanças na musculatura facial em resposta aos estados emocionais e tem um papel fundamental na interação das pessoas. A partir dos estudos iniciados por Darwin, Paul Ekman desenvolveu um estudo sugerindo a existência de sete expressões faciais básicas: alegria, tristeza, medo, nojo, desdém, surpresa e raiva, além da expressão neutra. Posteriormente, no intuito de mensurar o comportamento facial de forma mais aprofundada, Ekman desenvolveu um sistema para medição de todos os movimentos musculares faciais e suas intensidades, o Facial Action Coding System (FACS). O FACS permitiu um avanço em pesquisas de novos métodos para reconhecimento de expressões faciais aplicados nas mais diversas áreas, como educação, psicologia, interação homem-máquina, monitoração de comportamento, dentre outros. O presente trabalho sugere uma nova abordagem para reconhecimento de expressões faciais combinando mapas de saliência para destacar as partes da face que mais concentram as expressões faciais (conspicuidade) e uma rede neural de convolução. A análises mostraram que o sistema proposto alcançou uma precisão média na identificação das 7 (sete) expressões faciais básicas de 90% (noventa por cento) sobre o Extended Cohn-Kanade Data Set. Quando comparado com os trabalhos do estado-da-arte relacionados, o sistema mostrou uma precisão média superior a todos, além de superar, em termos absolutos, todos os trabalhos em 3 (três) das 7 (sete) expressões, demonstrando um resultado promissor.