Classificação de emoções humanas utilizando pontos de referência da face e redes neurais profundas
Ano de defesa: | 2024 |
---|---|
Autor(a) principal: | |
Outros Autores: | , |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Faculdade de Tecnologia Brasil UFAM Programa de Pós-graduação em Engenharia Elétrica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.ufam.edu.br/handle/tede/10297 |
Resumo: | As expressões faciais humanas desempenham um papel fundamental na comunicação não-verbal e na transmissão de emoções. Conceitualmente, as expressões faciais podem ser deduzidas a partir da disposição dos músculos faciais. Sendo uma avaliação subjetiva, a construção de uma base de dados para o reconhecimento de expressões faciais torna-se um desafio devido ao elevado risco de enviesamento decorrente de dados desequilibrados ou imprecisos. Por outro lado, os avanços nas técnicas de processamento de imagem e de aprendizagem profunda têm aumentado a precisão e a eficácia dos algoritmos de reconhecimento de expressões faciais. Neste trabalho, com o objetivo de melhorar o reconhecimento automático de expressões faciais, apresentamos a fusão de duas arquiteturas de redes neurais. A primeira compreende uma rede neural convolucional unidimensional (1D), com entrada caracterizada por pontos de referência da face, e uma segunda, uma rede neural convolucional baseada no backbone DenseNet, com a própria imagem do rosto como entrada. O otimizador ADAM foi utilizado durante o treino desta rede. Foi utilizada a base de dados AffectNet. O melhor resultado obtido foi uma precisão de 60,40% no subconjunto de teste, para a modalidade de 7 classes. Este resultado é comparável aos melhores resultados obtidos no conjunto de dados AffectNet. |