Variedades de Dimensão 4 com Curvatura Biortogonal Positiva

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Saba, Caroline Martins da Silva
Orientador(a): Costa, Ézio Araújo
Banca de defesa: Lima, Ana Lúcia Pinheiro, Ribeiro Júnior, Ernani Sousa
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto de Matemática. Departamento de Matemática.
Programa de Pós-Graduação: Mestrado em Matemática
Departamento: Não Informado pela instituição
País: brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufba.br/ri/handle/ri/19461
Resumo: Um problema clássico em geometria é classificar variedades compactas tanto do ponto de vista topológico quanto do ponto de vista geométrico. Sabemos que a curvatura (sob as formas mais variadas) pode determinar a topologia ou a geometria de tais variedades. Nesse presente trabalho, estudamos um tipo de curvatura (curvatura biortogonal) que é intermediária entre a curvatura seccional e a curvatura escalar. Em particular, em dimensão 4, essa noção de curvatura tem propriedades interessantes. Nosso principal objetivo é classificar variedades Riemannianas compactas e orientadas de dimensão 4, M4, que satisfazem as seguintes propriedades: 1) A métrica de M4 é analítica; 2) O tensor de Weyl tem divergência nula; 3) O mínimo da curvatura biortogonal satisfaz , onde é a curvatura escalar e é o primeiro autovalor do Laplaciano com respeito a .