Variedades compactas de dimensão 4 com curvatura positiva e parabolicidade de sólitons Ricci-harmônicos não-compactos
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Ciências Exatas Brasil UFAM Programa de Pós-graduação em Matemática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/5497 |
Resumo: | Este trabalho tem como principal objetivo estudar variedades Riemannianas compactas de dimensão 4, com curvatura seccional biortogonal positiva bem como a parabolicidade de sólitons Ricci-harmônicos. Na primeira parte do trabalho, obtemos teoremas de clas-sificação para subvariedades com curvatura biortogonal positiva. Além disso, usamos o conceito de curvatura biortogonal para obter uma condição de pinching a qual garante que uma variedade compacta de dimensão quatro seja definite. Na parte final do tra-balho, estudamos a parabolicidade de sólitons Ricci-harmônicos steady não-compactos. Mostramos que, sob uma condição de pinching na curvatura escalar, todo sóliton Ricci-harmônico completo não-compacto tem no máximo um fim não-parabólico. Além disso, obtemos estimativas para o volume das bolas geodésicas dos sólitons Ricci-harmônicos steady. |