Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Oliveira, Soraia Jesus de |
Orientador(a): |
Varela, Maria do Carmo Rangel Santos |
Banca de defesa: |
Souza, Marluce Oliveira da Guarda,
Santos, Marcos Malta dos,
Pontes, Luiz Antônio Magalhães,
Brandão, Soraia Teixeira |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Instituto de Química
|
Programa de Pós-Graduação: |
Química
|
Departamento: |
Não Informado pela instituição
|
País: |
brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.ufba.br/ri/handle/ri/16129
|
Resumo: |
A desidrogenação catalítica do etilbenzeno em presença de vapor d´água é, sem dúvida, a principal via de produção de estireno, um produto de alto valor comercial, amplamente utilizado na manufatura de borrachas e vários polímeros. Os catalisadores típicos comerciais são baseados em hematita (-Fe2O3) contendo óxido de cromo e óxido de potássio, que atuam como promotor textural e estrutural, respectivamente. Estes sistemas possuem diversas vantagens, tais como baixo custo e elevada resistência a venenos, mas apresentam algumas desvantagens, tais como a perda de potássio durante a reação, provocando a desativação do catalisador e a toxicidade do óxido de cromo. Visando a superar esses problemas, neste trabalho, foram preparados catalisadores de hematita dopada com magnésio, que foram avaliados na desidrogenação de etilbenzeno, a fim de obter sistemas isentos de cromo e de potássio para essa reação. Os catalisadores (Mg/Fe (molar)= 0; 0,01; 0,03; 0,06; 0,09 e 0,10) foram preparados por hidrólise simultânea de nitrato de ferro e de nitrato de magnésio, com hidróxido de amônio à temperatura ambiente, seguido de aquecimento a 600 °C. Os catalisadores foram caracterizados por análise química, espectroscopia no infravermelho com transformada de Fourier, difração de raios X, espectroscopia Mössbauer, medidas de área superficial específica, redução à temperatura programada e espectroscopia fotoeletrônica de raios X. Nas amostras com baixos teores de magnésio (Mg/Fe= 0,01 e 0,03) foram obtidos magnésia e cristais de hematita de 69 e 63 nm, respectivamente, enquanto na amostra com Mg/Fe= 0,06 foram produzidos cristais de hematita de 124 nm, co- existindo com ferrita de magnésio. Por outro lado, nas amostras mais ricas em magnésio (Mg/Fe= 0,09 e 0,1) foram obtidos cristais de hematita de 57 e 61 nm, respectivamente, co-existindo com magnésia e ferrita de magnésio. A adição de magnésio a catalisadores de hematita alterou a área superficial específica dos sólidos; a magnésia atua como um espaçador na produção de pequenos cristais de hematita. O magnésio também diminuiu a temperatura de redução da hematita mas não se observou uma tendência regular com o seu conteúdo. Em todos os catalisadores, o magnésio tende a depositar-se na superfície e este efeito aumenta com o seu teor, gerando superfícies sólidas parcialmente cobertas com magnésia e/ou ferrita de magnésio. Todos os catalisadores dopados com magnésio foram mais ativos que a hematita na desidrogenação de etilbenzeno, em presença de vapor d´água e seletiva ao estireno. A atividade e a seletividade da hematita variaram de forma irregular com o teor de magnésio, um fato que pode ser relacionado com as diferentes fases nos sólidos. Foi proposto que a magnésia atua como promotor textural, levando à produção de pequenos cristais de hematita, que são cataliticamente mais ativos, enquanto a ferrita de magnésio aumenta a atividade dos sítios de ferro devido às interações eletrônicas na estrutura do espinélio. A combinação destes efeitos conduz à formação do catalisador mais ativo (Mg/Fe= 0,9), consistindo de hematita parcialmente coberta por magnésia e ferrita de magnésio. Ele tem a vantagem de não ser tóxico, sendo promissor para aplicações comerciais. Além disso, o catalisador com o mais baixo teor de magnésio (Mg/Fe= 0,1), consistindo de hematita parcialmente coberta por magnésia, também é atrativo para aplicações comerciais, devido à sua elevada selectividade (quase 100%), o que pode evitar a reciclagem do etilbenzeno e as operações de separação, levando a uma redução nos custos operacionais |