Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Vieira, Lucas Santos
 |
Orientador(a): |
Carrasco, Jalmar Manuel Farfan
 |
Banca de defesa: |
Carrasco, Jalmar Manuel Farfan,
Ospina, Patricia Leone Espinheira,
Garay, Aldo William Medina |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal da Bahia
|
Programa de Pós-Graduação: |
Pós-Graduação em Matemática (PGMAT)
|
Departamento: |
Instituto de Matemática
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufba.br/handle/ri/39323
|
Resumo: |
Os modelos de regressão Beta e Simplex tem sido amplamente utilizados para analisar variáveis que representam taxas, proporções ou índices, isto é, variáveis mensuráveis no intervalo aberto (0,1). Em alguns fenômenos estas variáveis estão correlacionadas, o que requer a obtenção de distribuição multivariada, em particular o caso bivariado, segundo uma determinada abordagem. Nesse sentido, o presente trabalho tem como objetivo principal propor o modelo de regressão Simplex Multivariado (MRSM) via função cópula. Estimadores para os parâmetros são encontrados via o método de máxima verossimilhança (MV) e, via um estudo de simulação estuda-se seus respectivos comportamentos assintóticos. Uma análise de diagnostico, tais como: análise de resíduos e influência global (distância de Cook generalizada e afastamento da verossimilhança), são desenvolvidos com o intuito de identificar possíveis pontos atípicos e/ou influentes e a adequabilidade do modelo aos dados. Por fim, os resultados são aplicados a dois conjuntos de dados reais para exemplificar a metodologia desenvolvida. |