Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Freitas, Ana Paula |
Orientador(a): |
Barbosa, José Nelson Bastos |
Banca de defesa: |
Barbosa, José Nelson Bastos,
Fernandes, Marco Antonio Nogueira,
Mandolesi, André Luis Godinho |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Instituto de Matemática
|
Programa de Pós-Graduação: |
Mestrado em Matemática
|
Departamento: |
Não Informado pela instituição
|
País: |
brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.ufba.br/ri/handle/ri/19487
|
Resumo: |
Apresentaremos neste trabalho dois teoremas que caracterizam as curvas anal ticas complexas, isto e, os gr a cos de fun c~oes holomorfas ou anti-holomorfas, que mostraremos serem superf cies m nimas em R4. O primeiro resultado, que e um Teorema tipo Bernstein para superf cies m nimas em R4, caracteriza as curvas anal ticas complexas atrav es do Jacobiano. Este teorema e de grande import^ancia, uma vez que alguns resultados tipo Bernstein para superf cies em R4, obtidos anteriormente, seguem como corol ario deste. O segundo teorema caracteriza as curvas anal ticas complexas a partir de dois invariantes geom etricos, as curvaturas Gaussiana e Normal. |