Identificação do efeito causal no modelo de mediação com variáveis latentes

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Passos, Michelle Pereira Vale dos lattes
Orientador(a): Amorim, Leila Denise Alves Ferreira lattes
Banca de defesa: Amorim, Leila Denise Alves Ferreira lattes, Fiaccone, Rosemeire Leovigildo lattes, Ramos, Dandara de Oliveira lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Bahia
Programa de Pós-Graduação: Pós-Graduação em Matemática (PGMAT) 
Departamento: Instituto de Matemática
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufba.br/handle/ri/39869
Resumo: A análise de mediação causal baseada em respostas potenciais (contrafactuais) tem sido amplamente utilizada na decomposição do efeito causal de uma intervenção sobre desfechos de aplicações em diversas áreas do conhecimento, ressaltando-se a epidemiologia e as ciências sociais. Os métodos mais conhecidos são descritos em termos de variáveis contínuas, especialmente modelos lineares (para ambos o mediador e o desfecho) e em situações em que as variáveis são mensuradas sem erro. Em alguns casos, no entanto, o mediador e/ou o desfecho podem ser variáveis não observadas diretamente, mas potencialmente caracterizadas via modelos de classes latentes. Portanto, na medida em que os modelos de mediação causal com variáveis latentes passam a ser disseminados na literatura, é necessária a formalização das condições de identificação causal dos efeitos naturais direto e indireto para que seja feita a interpretação causal dos estimadores e sua estimação ocorra sem viés. Neste contexto, esta dissertação objetiva avaliar o comportamento dos estimadores dos efeitos direto e indireto sob os critérios de identificação causal em modelos que incorporam variáveis latentes categóricas, via análise de classes latentes (LCA), em situações que podem envolver mediador e/ou desfechos latentes. As metodologias para estimação do efeito natural indireto (NIE) e do efeito natural direto (NDE) são estendidas para situações em que as variáveis latentes categóricas possuem mais de duas classes. Além disso, propõe-se alternativamente a inclusão de escores de propensão em modelos marginais estruturais com variáveis latentes. Estudos de simulação Monte Carlo foram conduzidos para avaliar propriedades dos métodos propostos em amostras finitas, considerando-se diferentes cenários de violação das suposições de identificação causal. Todas as metodologias para estimação do NIE e NDE em situações que envolvem variáveis latentes categóricas são ilustradas pela análise de dados reais para avaliar os efeitos: (i) de uma intervenção de promoção à saúde intersetorial, relacionada com dieta e padrões de atividade física na obesidade, tendo como mediador o estilo de vida, em adolescentes matriculados em escolas da rede pública no interior da Bahia; e (ii) da gestão municipal de saúde na qualidade do cuidado infantil de equipes da atenção primária à saúde (APS), que é mediado pela qualidade do planejamento e organização dos serviços da APS. Os resultados obtidos destacam a importância dos critérios de identificação causal para viabilizar a interpretação causal dos efeitos mediados, fornecendo insights valiosos para o avanço do conhecimento. Além disso, apontam para possíveis direções futuras de pesquisa e ressaltam a importância do rigor metodológico na estimação e identificação dos efeitos causais mediados.