O Teorema de Hopf e Generalizações

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Pereira, Julio Cesar Carvalho
Orientador(a): Lima, Ana Lúcia Pinheiro
Banca de defesa: Pereira, Julio Cesar Carvalho, Barbosa, José Nelson Bastos, Fetcu, Dorel
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Instituto de Matemática. Departamento de Matemática
Programa de Pós-Graduação: Mestrado em Matemática
Departamento: Não Informado pela instituição
País: brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.ufba.br/ri/handle/ri/19473
Resumo: "Em 1951, o matemático Heinz Hopf provou a seguinte afirmação: 'Seja S uma superfícies em R^3, compacta de gênero zero, com curvatura média constante. Então S é a esfera.' O objetivo do nosso trabalho é apresentar a demonstração deste resultado clássico, bem como, alguns resultados que o generalizam. Serão consideradas superfícies c.m.c. imersas me espaços homogêneos E^3(t,k) e também superfícies com vetor curvatura média paralelo imersas em espaços E^n_c X R. As técnicas desenvolvidas originalmente por Hopf, com as devidas adaptações a cada novo espaço ambiente, são as principais ferramentas utilizadas nas demonstrações dessas generalizações."