Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Pereira, Julio Cesar Carvalho |
Orientador(a): |
Lima, Ana Lúcia Pinheiro |
Banca de defesa: |
Pereira, Julio Cesar Carvalho,
Barbosa, José Nelson Bastos,
Fetcu, Dorel |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Instituto de Matemática. Departamento de Matemática
|
Programa de Pós-Graduação: |
Mestrado em Matemática
|
Departamento: |
Não Informado pela instituição
|
País: |
brasil
|
Palavras-chave em Português: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://repositorio.ufba.br/ri/handle/ri/19473
|
Resumo: |
"Em 1951, o matemático Heinz Hopf provou a seguinte afirmação: 'Seja S uma superfícies em R^3, compacta de gênero zero, com curvatura média constante. Então S é a esfera.' O objetivo do nosso trabalho é apresentar a demonstração deste resultado clássico, bem como, alguns resultados que o generalizam. Serão consideradas superfícies c.m.c. imersas me espaços homogêneos E^3(t,k) e também superfícies com vetor curvatura média paralelo imersas em espaços E^n_c X R. As técnicas desenvolvidas originalmente por Hopf, com as devidas adaptações a cada novo espaço ambiente, são as principais ferramentas utilizadas nas demonstrações dessas generalizações." |