Realimentação de relevância em buscas de imagem usando programação Genética
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Computação Brasil UFAM Programa de Pós-graduação em Informática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.ufam.edu.br/handle/tede/5260 |
Resumo: | Produtos de moda são itens difíceis de ser anotados e descritos por texto, fazendo-se necessário o uso de imagens para a realização de buscas em web sites de e-commerce. Tais produtos detém grande apelo visual, ou seja, a apresentação de imagens referentes aos mesmos são fatores que influenciam diretamente a decisão de compra de um cliente. Estes fatos justificam o estudo do uso de CBIR (Content Based Image Retrieval) neste contexto, uma área já bastante estudada na comunidade científica, mas que ainda possui diversas lacunas, sendo a principal o problema do Gap Semântico. O uso de características extraídas da imagem por um algoritmo ainda não é eficaz o suficiente em associá-la ao seu significado, o que se reflete nos resultados de uma busca, afetando a satisfação do cliente com a loja. Este trabalho busca abordar o problema do Gap Semântico através do uso de Programação Genética e Relevance Feedback, motivado pelos bons resultados relatados na literatura referentes ao uso de tais técnicas. Foram realizados experimentos com uma base de imagens extraídas de web sites de e-commerce, e foram usados dois subconjuntos de imagens como consultas, sendo um formado por imagens com plano de fundo uniforme (semelhantes às presentes na base), e outro por imagens com ruído no fundo (fotografias em geral). Foram comparados o uso de Relevance Feedback para os dois subconjuntos de consultas, e para cada subconjunto foram comparados o uso de funções de ranking aprendidas com e sem o uso de feedback. Como resultado temos que o melhor cenário para ambos os subconjuntos é o uso da função de ranking aprendida sem RF. O uso de RF durante a aprendizagem torna os indivíduos dependentes do feedback, piorando as respostas em buscas antes da primeira interação de RF, e fazendo com que a função aprendida não seja capaz de captar a semântica da consulta original. |