Recuperação de imagens por conteúdo: uma abordagem multidimensional de modelagem de similaridade e realimentação de relevância

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Barcelos, Emílio Zorzo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Uberlândia
BR
Programa de Pós-graduação em Engenharia Elétrica
Engenharias
UFU
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufu.br/handle/123456789/14416
Resumo: This work presents a multi-dimensional similarity modeling strategy and relevance feedback technique for minimizing the semantic gap intrinsic problem of CBIR systems by allowing users to customize their queries according to their requirements and preferences. We propose a composite strategy using a multi-dimensional, vectorial, spatially clustered, and relevance-ordered approach. Given a set of k features which represents the elements in an image database, the similarity measure between a query image and another from the image collection is analyzed in k components, and the images are ranked on a k dimensional space according to their projections over the axis xn, where n = 1, 2, ... k. System experimentation was executed thoroughly using a test image database containing up to 20,000 pictures. The experimental results have shown that the presented approach can substantially improve the outcome in image retrieval systems.