Detecção automática de conteúdo ofensivo na web

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: Belém, Ruan Josemberg Silva
Outros Autores: http://lattes.cnpq.br/1956136040044296
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Computação
BR
UFAM
Programa de Pós-graduação em Informática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Web
Link de acesso: http://tede.ufam.edu.br/handle/tede/2932
Resumo: A World Wide Web (Web) é uma fonte de informação com grande quantidade e diversidade de conteúdo, incluindo material de caráter ofensivo relacionado á pornografia. Diante deste cenário, existe a necessidade de detectar tal conteúdo ofensivo de maneira a evitar que o mesmo seja indevidamente acessado por crianças ou por funcionários de empresas, onde o acesso a este tipo de conteúdo geralmente não é permitido. Embora este tipo de informação possa estar presente na Web em forma de texto, vídeo ou sons, grande parte deste conteúdo está disponibilizado na forma de imagens. O problema de identificação de imagens ofensivas pode ser visto como um problema de classificação. Como as imagens em questão estão inseridas em páginas web, além das informações que podem ser extraídas da própria imagem, também têm-se as informações textuais encontradas nas páginas que possuem as imagens. Aptos a extração de evidências a classificação é realizada usando-se um classificador baseado em SVM treinado com uma coleção de 1000 imagens ofensivas e 1000 imagens não-ofensivas. Este trabalho apresenta duas abordagens diferentes para detecção de imagens ofensivas na Web: a primeira, baseada no conteúdo da imagem e a segunda, baseada em evidências textuais extraídas das páginas web onde se encontram as imagens. Ambas as abordagens se mostraram efiazes na detecção de imagens ofensivas, apesar de utilizarem algoritmos simples para a extração de informações relacionadas às imagens.